Mollification in Strongly Lipschitz Domains with Application to Continuous and Discrete De Rham Complex
نویسندگان
چکیده
We construct mollification operators in strongly Lipschitz domains that do not invoke non-trivial extensions, are Lp stable for any real number p ∈ [1,∞], and commute with the differential operators ∇, ∇×, and ∇·. We also construct mollification operators satisfying boundary conditions and use them to characterize the kernel of traces related to the tangential and normal trace of vector fields. We use the mollification operators to build projection operators onto general H1-, H(curl)and H(div)-conforming finite element spaces, with and without homogeneous boundary conditions. These operators commute with the differential operators ∇, ∇×, and ∇·, are Lp-stable, and have optimal approximation properties on smooth functions.
منابع مشابه
Mollification in Strongly Lipschitz Domains with Application to Continuous and Discrete De Rham Complexes
Weconstructmolli cation operators in strongly Lipschitz domains that do not invoke non-trivial extensions, are Lp stable for any real number p ∈ [1,∞], and commutewith thedi erential operators∇,∇×, and ∇⋅. We also constructmolli cation operators satisfying boundary conditions and use them to characterize the kernel of traces related to the tangential and normal trace of vector elds. We use the ...
متن کاملDISCRETE AND CONTINUOUS SIZING OPTIMIZATION OF LARGE-SCALE TRUSS STRUCTURES USING DE-MEDT ALGORITHM
Design optimization of structures with discrete and continuous search spaces is a complex optimization problem with lots of local optima. Metaheuristic optimization algorithms, due to not requiring gradient information of the objective function, are efficient tools for solving these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean Euclidian Distance Threshold ...
متن کاملA regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملPERFORMANCE OF DIFFERENT ANT-BASED ALGORITHMS FOR OPTIMIZATION OF MIXED VARIABLE DOMAIN IN CIVIL ENGINEERING DESIGNS
Ant colony optimization algorithms (ACOs) have been basically introduced to discrete variable problems and applied to different research domains in several engineering fields. Meanwhile, abundant studies have been already involved to adapt different ant models to continuous search spaces. Assessments indicate competitive performance of ACOs on discrete or continuous domains. Therefore, as poten...
متن کاملOn Bogovskiı̆ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains
We study integral operators related to a regularized version of the classical Poincaré path integral and the adjoint class generalizing Bogovskiı̆’s integral operator, acting on differential forms in R. We prove that these operators are pseudodifferential operators of order −1. The Poincaré-type operators map polynomials to polynomials and can have applications in finite element analysis. For a ...
متن کامل